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Abstract—Simultaneous acquisition of brain activity signals 

from the sensorimotor area using NIRS combined with EEG, 
imagined hand clenching force and speed modulation of brain 
activity, as well as 6-class classification of these imagined motor 
parameters by NIRS-EEG were explored. Near infrared probes 
were aligned with C3 and C4, and EEG electrodes were placed 
midway between the NIRS probes. NIRS and EEG signals were 
acquired from 6 healthy subjects during 6 imagined hand 
clenching force and speed tasks involving the right hand. The 
results showed that NIRS combined with EEG is effective for 
simultaneously measuring brain activity of the sensorimotor area. 
The study also showed that in the duration of (0, 10) s for 
imagined force and speed of hand clenching, HbO first exhibited a 
negative variation trend, which was followed by a negative peak. 
After the negative peak, it exhibited a positive variation trend 
with a positive peak about 6–8 s after termination of imagined 
movement. During (-2, 1) s, the EEG may have indicated neural 
processing during the preparation, execution, and monitoring of a 
given imagined force and speed of hand clenching. The 
instantaneous phase, frequency, and amplitude feature of the 
EEG were calculated by Hilbert transform; HbO and the 
difference between HbO and Hb concentrations were extracted. 
The features of NIRS and EEG were combined to classify 3 levels 
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of imagined force (at 20/50/80 % MVGF (maximum voluntary 
grip force)) and speed (at 0.5/1/2 Hz) of hand clenching by SVM. 
The average classification accuracy of the NIRS-EEG fusion 
feature was 0.74 ± 0.02. These results may provide increased 
control commands of force and speed for a brain-controlled robot 
based on NIRS-EEG. 
 

Index Terms—Brain-computer interface, 
electroencephalogram (EEG), near infrared spectroscopy (NIRS), 
imagined force and speed of hand clenching, NIRS-EEG.  

I. INTRODUCTION 

lthough EEG has low spatial resolution, it continues to 
be a valuable tool for research and diagnosis, especially 

when millisecond-range temporal resolution, such as 
brain-computer interaction applications (not possible with MRI) 
is required. Compared with EEG, NIRS is an active measuring 
method to emit energy into tissue and infer functional neural 
activity from metabolic activity, which is measured by 
changing light absorption [1]-[3] and is a relatively new 
approach in neuroscience and brain-computer interfaces [4]-[8]. 
With fNIRS, tissue function alone produces the imaged signal 
[9]. Though NIRS has a low time resolution, it has a stronger 
anti-interference ability (e.g., electrical noise) and a relatively 
stable signal compared to EEG [2], [3], [6], [10]. The above 2 
methods to detect noninvasively brain activity on the scalp have 
pros and cons. Whether combining these 2 detection methods 
compensates for their limitations remains to be investigated. 
For this purpose, this study proposes a method in which brain 
signals from the same cortical areas (sensorimotor area) can be 
acquired simultaneously by NIRS combined with EEG. This 
method may provide support for multi-mode brain computer 
interfaces based on NIRS-EEG [10]-[13]. 

In addition, studies have shown that both actual movement 
and motor imagery can modulate EEG [14]-[19] and NIRS 
activity [20]-[26]. However, it remains to be determined 
whether imagined hand clenching force and speed can 
modulate NIRS and EEG signals. For this reason, this study 
investigated imagined hand clenching force and speed 
modulation of NIRS and EEG under the proposed motor 
parameters imagery (MPI) paradigm based on the above 
NIRS-EEG acquisition method [10].  

Finally, decoding of imagined movement parameters based 
on central nerve signals collected by non-invasive methods 
may provide increased and flexible control command numbers 
for BCI applications [10], [27], [28]. However, this is a great 
challenge. It is difficult to obtain stable and good classification 
accuracy using the traditional single mode or single feature 
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method (such as EEG or NIRS). It is well known that the 
advantage of using EEG and NIRS in a hybrid BCI system is 
either to improve classification accuracy or to increase the 
number of control commands. Some progress in decoding 
motor attempt and imagery or movement directions using 
NIRS-EEG has been made [10], [29-31]. Yin et al. separated 
hand clenching force from speed motor imagery and achieved 
clear results [10]. However, different levels of hand clenching 
force and speed motor imageries were not decoded. In this 
study, we attempted to classify 3 levels of imagined hand 
clenching force and speed motor parameters (a total of 6 classes) 
by NIRS combined with EEG. 

II. MATERIALS AND METHODS 

A.  Subjects 

Six healthy volunteers (S1–S6; 3 men and 3 women; age 
24–33 years and mean age 26.8 ± 3.3 years; all right-handed) 
participated in NIRS and EEG data acquisition. Three subjects 
had not been in an NIRS experiment previously, and 4 subjects 
had not been in an EEG experiment previously. None had 
known sensory-motor diseases or history of psychological 
disorders. Each subject gave informed consent for the study, 
which was approved by Shenyang Institute of Automation 
(SIA), Chinese Academy of Sciences. 

B.  Experimental paradigm: mental task and timing for a trial 

The subjects were asked to execute 6 imagery tasks: 
imagined speed of hand clenching self-paced movements 
involving the right hand at 0.5 Hz (slow), 1 Hz (normal), and 2 
Hz (fast) rate as well as imagined force of hand clenching 
self-paced movements involving the right hand at 20% (low), 
50% (middle), and 80% (high) maximum voluntary hand 
clenching force (MVGF). Fig. 1 shows the timing diagram of a 
single trial for imagined force and speed of hand clenching 
during brain signals simultaneously acquired by NIRS 
combined with EEG. The top panel in Fig. 1 shows 3 modes of 
variation in force of hand clenching, including the development 
rate of 20%, 50%, and 80% MVGF during 2 s for target force of 
hand clenching (TGF) and then keeping TGF constant for 8 s; 
the middle panel in Fig. 1 shows cue presentation for imagined 
force and speed of hand clenching; the bottom panel in Fig. 1 
shows timing of a single trial for mental tasks. The timing 
diagram was generated by E-Prime 1.1 (Psychology Software 
Tools, Inc., Sharpsburg, KY, USA). 

C. Imagined hand clenching force and speed training for 
subjects 

Before formal data acquisition, all subjects were instructed to 
understand the instructions of imagined hand clenching at a 
specific speed or force. Subsequently, they were first asked to 
execute 3 modes of actual hand clenching movement at a speed 
of 0.5/1/2 Hz with the metronome program pacing in order to 
experience each speed movement and then imagine hand 
clenching speed movement with and without the cue from the 
metronome program (self-paced). Subjects who were instructed 
to focus on the right hand during motor imagery executed 
kinesthetic imagination from the first person perspective (to 
recall and feel his/her own right hand and mainly experience 
the mental rehearsal of an actual hand clenching movement 
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Fig. 1. Timing schematic diagram of a single trial for imagined force and speed 
of hand clenching during brain signals simultaneously acquired by NIRS 
combined with EEG. In the timing diagram: baseline interval (BLI), ready 
interval (RI), task cue interval (TCI/TC), task interval (TI), and random rest 
(RR). Here, the time instant 0 was the starting moment of the experiment. 
 

without overt movement), avoiding any visual imagery from 
the third person perspective (i.e., see a motion picture in mind). 
The subjects were asked to relax, avoid body muscle activity, 
facial muscle tension, blinking, and slow eye movement during 
motor imagery. 

For imagined force of hand clenching, MVGF was first 
determined as the average of 3 maximal force of isometric 
hand-clenching with the hand dynamometer, which were 
separated by 3 min rest intervals. After calculating MVGF, the 
subjects were asked to execute the actual hand clenching force 
movement with the hand dynamometer according to 3 target 
hand clenching force (20/50/80% MVGF) requirements: 
development for 2 s, keeping constant for 8 s, and executing the 
corresponding force of hand clenching motor imagination using 
kinesthetic imagery. For the above 6 types of force and speed of 
hand clenching motor imagery, the subjects were trained until 
they reported imagined movements with a clear, vivid, and 
controllable effect [32]. 

D. Positioning of NIRS probes and EEG electrodes for NIRS 
combined with EEG 

To measure simultaneously variations in EEG related to 
mental tasks and corresponding variations in NIRS, near 
infrared probes were aligned with C3 or C4, and reference and 
EEG electrodes were located midway between the NIRS probes 
as shown in Fig. 2. The EEG recording was referenced to the 
bilateral mastoid (M1, M2) and grounded at Fpz. Electrodes 
were made of Ag-AgCl powder. 

E. The synchronous method and experimental setup for 
simultaneous acquisition of NIRS-EEG  

While the cued picture for motor imagery task was presented 
to a subject, the cued signal was simultaneously sent to the EEG  
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Fig. 2. Positioning of NIRS probes and EEG electrodes for NIRS combined 

with EEG. (a) The electrode-optode arrangement surrounded by a red dashed 
line for the recording region of the experiment. Labels 1, 2, and 3 indicate the 
EEG electrode, near infrared emitting probe, and receiving probe, respectively. 
(b) Schematic diagram of the round red hole position. (c) Schematic diagram of 
the round blue hole position. The round red and blue hole positions for near 
infrared probes were aligned with C3 for the simultaneous measurement of 
EEG and NIRS. The round red and blue hole positions represent the drilling 
hole positions on the EEG cap for near infrared probes. (d) The actual positions 
of the EEG electrodes and the NIRS probes in the experiment. 
 

and NIRS amplifier to achieve synchronous acquisition. The 
cue signal for the EEG acquisition system (Neuroscan 
SynAmps2, Charlotte, NC, USA) was sent by the parallel port, 
and after 50 ms, the signal 0 was sent to reset. The trigger 
signals were 1, 2, 3, 4, 5, and 6 (corresponding to the 6 motor 
imagery tasks). The cue signal for the ETG-4000 (Hitachi 
Medical Corporation, Tokyo Japan) was sent by the serial port 
and its source was set on ETG-4000.The trigger signals were F1, 
F2, F3, F4, F5, and F6 (also corresponding to the 6 motor 
imagery tasks). In the experimental process, to reduce the time 
difference between the above 2 cue signals, the trigger was first 
sent to the ETG-4000 by the serial port and then to the 
SynAmps by the parallel port. The time difference between the 
2 triggers measured by the experiment was 1–2 ms, which was 
in the acceptable range. Synchronous acquisition of EEG and 
cerebral blood oxygen signal is shown in Fig. 3(a). 

The data were recorded only when EEG and NIRS amplifiers 
were activated and the subjects performed self-paced hand 
clenching force and speed motor imagery according to a cue 
provided by the timing of experiments. Extraction and analysis 
of the data segments were based on the synchronized signal and 
the timing of experiments. 
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Fig. 3. The synchronous method and experimental setup for simultaneous 
acquisition of brain signals by NIRS combined with EEG. (a) Synchronous 
method for simultaneous acquisition of EEG and cerebral blood oxygenation 
level signals during imagined force and speed of hand clenching. (b) 
Experimental setup for simultaneous acquisition of EEG and NIRS from the 
subject. 
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The experimental setup is shown in Fig. 3(b) (left to right: 
ETG-4000, Neuroscan SynAmps2, subject, computer 
presenting the cue, and computer recording EEG). The NIRS 
signals were sampled at 10 Hz; the EEG signals were sampled 
at 1000 Hz using a 24 bit A/D converter with a signal frequency 
band of 0–250 Hz and a notch filter at 50 Hz. EOG (the same 
band pass and sampling rate as for EEG) was recorded to 
exclude trials contaminated by eye movements. Electrode 
impedances were kept below 5 k kΩ. 

F. Experimental procedure 
The subject sat in a comfortable armchair with his/her arms 

resting naturally on the armrest 0.7–1 m in front of a computer 
screen that presented task cues. The experimenter positioned 
the EEG electrodes and NIRS probes according to the helmet 
used for collecting brain signals by NIRS combined with EEG, 
as shown in Fig. 2(d). The subject was first instructed to train 
himself/herself with a set of trials and then execute 10 runs of 
formal trials during each session. A start tag "ST" was sent to 
the ETG-4000 using a serial port, as shown in Fig. 2(a). Each 
run comprised 6 trials corresponding to 6 different imagined 
force and speed of hand clenching tasks. Thus, each session had 
a total of 60 trials and 10 trials for each condition. 

The baseline of the first trial in the formal experiment was 
the resting state from t = 0 s to 20 s, during which cerebral 
blood oxygenation returned to the baseline state, as shown in 
Fig. 1. After baseline, a black fixation cross as a preparation 
prompt appeared on the white screen and lasted for 2 s, during 
which subjects were asked to stay relaxed and ready for the trial. 
At t = 22 s, a cue in the form of a picture appeared on the white 
screen indicating force of hand clenching imagination of 
20%/50%/80% MVFG or speed of hand clenching imagination 
of 0.5 Hz/1 Hz/2 Hz. The cue lasted 2 s, and the subjects were 
asked to get ready for motor imagery. At the moment when task 
cues were presented, the synchronized trigger signal was 
simultaneously sent to the EEG and NIRS amplifier by parallel 
and serial ports, respectively. 

The subject began to execute the cued imagery task when the 
cued picture disappeared from the screen and a black 
star-shaped fixed cursor appeared on the white screen. The 
subject was asked to perform the cued motor imagery task 
attentively, and they recalled the process of his/her right hand 
clenching force and maintaining the target force or speed of 
hand clenching without actual motion. The imagined task was 
maintained for 10 s until the fixation cursor disappeared from 
the screen, during which no online identification results were 
provided for the subject. When the task ended, the screen went 
blank, and the subject was given an 18–20 s rest until the next 
trial started. At the end of the experiment, an end tag was sent to 
the ETG-4000 using the serial port. 

A trial lasted 32–34 s including the buffer time. During the 
trial, subjects were asked to avoid blinking, slow eye movement, 
and using facial muscles as well as other body parts except 
during the random rest intervals between trials. Each subject 
attended 3 sessions and 30 trials for each motor imagery task in 
the experiment. The trials (different motor imagery tasks) in the 
study were presented in a randomized sequence using E-Prime. 

G. Data processing for NIRS and EEG 

1) Data processing for NIRS: We used a continuous wave 

NIRS, and changes in optical intensity were related to changes 
in hemoglobin concentrations according to the modified 
Beer-Lambert law [33]. Changes in concentrations of 
oxygenated hemoglobin (ΔOxy-Hb) and deoxygenated 
hemoglobin (ΔDeoxy-Hb) by the dual wavelength system can 
be estimated using equations (1) and (2), respectively [33]. 

Hb Hb
λ1 λ2 λ1 λ1

Hb HbO HbO Hb
λ1 λ2 λ1 λ2

EC OD EC OD
Oxy-Hb

(EC EC EC EC )d

  
 


         (1) 

HbO Hb
λ2 λ1 λ2 λ2

Hb HbO HbO Hb
λ1 λ2 λ1 λ2

EC OD EC OD
Deoxy-Hb

(EC EC EC EC )d

  
 


   (2) 

     
ΔODλ1 and ΔODλ2 are changes in optical density of 

wavelengths λ1 and λ2, respectively. HbO
λ1EC , HbO

λ2EC , and 
Hb
λ2EC  and Hb

λ1EC are the extinction coefficients of oxygenated 

hemoglobin and deoxygenated hemoglobin for wavelengths λ1 
and λ2, respectively, and d is the total corrected photon 
path-length [34]-[36]. In this study, λ1 = 695 nm, λ2 = 830 nm, 

HbO
λ1EC 0.3120 , Hb

λ1EC 1.9665 , HbO
λ2EC 1.0507 , 

and Hb
λ2EC 0.7804  were obtained from previous research 

[33]-[35]. 
The original optical intensity data were converted into 

oxyhemoglobin concentration data (HbO/Hb) by NIRS-SPM, 
which were then low-pass filtered at 0.1 Hz and linearly 
detrended. The mental tasks performed by subjects were 
divided into 2 categories including imagined force and speed of 
hand clenching. The imagined force of hand clenching included 
3 classes: 20/50/80% MVGF, and their event identifiers were 
F1, F2, and F3; the imagined speed of hand clenching had 3 
classes including 0.5/1/2 Hz, and their event identifiers were F4, 
F5, and F6. The different epochs were extracted according to 
the event identifiers, and the data segments were calibrated 
with (-12, 0) s as the baseline, and then averaged. NIRS 
channels 21 and 7 corresponded to EEG channels C3 and C4, 
respectively. Channels 21 and 7 were investigated because of 
motor imagery involving the right hand [10]. 

2) Data processing for EEG: Data preprocessing for EEG 
included the following: the NeuroScan CNT file was loaded 
into EEGLAB; the 21 channel electrode location file 
(21channlocs.ced) was loaded into EEG; only channels C3 and 
C4 were calculated and extracted in data processing; EEG 
signals were down-sampled to 250 Hz and notched at 50 Hz; to 
remove baseline drift and extract more features for further 
study, an FFT linear filter (0.05-45 Hz) was implemented using 
EEGLAB’s eegfiltfft function to band/low-pass filter EEG; t = 
0 s corresponds to the onset of imagined movement parameters 
task (corresponding to t = 24 s of the first trial in Fig. 1). 

After the above data preprocessing, the interesting epochs of 
8 s in length from -4 to 4 s were extracted. Event marks 1, 2, and 
3 marked 20/50/80% MVGF imagined force of hand clenching 
movement, respectively; event marks 4, 5, and 6 corresponded 
to 0.5 Hz, 1 Hz, and 2 Hz speed of hand clenching motor 
imagery tasks, respectively. The interval might cover the 
resting state of (-4,-2) s, the movement preparation state of (-2,0) 
s, and imagined hand clenching movement of (0,4) s. 

Then, further processing for the above results included the 
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following: the baseline correction interval was (-2.5, -2) s and 
was chosen from the resting state interval of (-4, -2) s; EOG and 
EMG were removed from the epochs with ICA using 
EEGLAB’s binica function; the data were low-pass filtered 
using eegfiltfft at 2 Hz to extract slow potentials; for each 
subject, movement-related cortical potentials (MRCP) related 
to each imagined force and speed of hand clenching movement 
were calculated by the superimposed and averaged techniques. 

H.  Features extraction, fusion, statistical analysis, and 
classification of NIRS-EEG related to imagined force and 
speed of hand clenching 

To take into account the portability and practicality of the 
hybrid NIRS-EEG BCI system in the future, and also the 
dimension of the feature vector, NIRS and EEG features were 
extracted from the C3 and C4 positions, which are 
representative of the right and left sensorimotor areas. 

1) Features extraction for NIRS: Yin et al. demonstrated that 
the concentration signal was more effective in reflecting brain 
activations than optical signals [10]. In addition, their research 
also showed that the difference between HbO and Hb 
concentrations (HbD) may provide new information for 
cerebral activations and can achieve better results than the Hb, 
HbO, and HbT features. Therefore, the HbD and HbO features 
of 24 channels from the (0, 10) s period were extracted. 

2) Features extraction for EEG: Yin et al. showed that the 
phase feature outperformed the amplitude feature, and the 
classification accuracy can be improved by the amplitude 
combined with phase features [10]. To identify different levels 
of hand clenching force and speed motor imageries, the 
instantaneous amplitude (IA), instantaneous phase (IP), and 
instantaneous frequency (IF) of EEG signals were calculated 
and combined into a feature vector that was expected to 
enhance classification performance. These features can be 
extracted using the Hilbert transform [10], [37]. The following 
(3) shows that a non-stationary signal ( )x t  is transformed 

into ( )y t  by Hilbert transform. 

1 ( )
( )

x
y t P d

t

 
 






                         (3) 

Here, P is Cauchy principal value. IP, IA, and IF can be 
calculated by the following (4)-(6), respectively 

( )
IP ( ) arctan

( )

y t
t

x t
                        (4) 

2 2IA ( ) ( )x t y t                             (5) 

( )
IF

d t

dt


                                            (6) 

3) Features fusion for NIRS-EEG: Classification of a sole 
feature was widely used in BCI applications. Classification of 
multi-features fusion was adopted in the current study. Yin et al. 
showed that the merged feature outperformed the sole EEG 
feature and the sole fNIRS feature [10]. To identify different 
levels of hand clenching force and speed motor imageries, 
NIRS features related to motor parameters imagery, the HbO 
and HbD, first were combined to construct the HbO-HbD 
feature, and then EEG features related to motor parameters 
imagery, the IA, IP, and IF, were integrated to form the 

IA-IP-IF feature. Finally, the HbO-HbD and the IA-IP-IF were 
fused to create the HbO-HbD & the IA-IP-IF. A total of 10 
features were obtained from fNIRS and EEG (4 features from 
NIRS and 6 features from EEG). 

4) Statistical analysis of NIRS and EEG related to imagined 
force and speed of hand clenching: We assumed that the main 
factor influencing NIRS and EEG was imagined force and 
speed of hand clenching. The influence factor involved 6 levels 
including 20/50/80% MVGF and 0.5/1/2 Hz imagined hand 
clenching force and speed. Analysis of variance (ANOVA) of 
single factor and subsequent multiple comparisons were used 
on NIRS features (HbO and HbD) and EEG features (IA, IP, 
and IF). The results of ANOVA and multiple comparisons were 
considered significant at P < 0.05. 

5) Classification of imagined force and speed of hand 
clenching by SVM: Six-class classifications were performed in 
the study (3 levels of hand clenching force and 3 levels of hand 
clenching force motor imageries). The support vector machine 
(SVM) has been widely used in BCI research and applications. 
In this study, SVM function from MATLAB (version 7.6) 
was modified according to the literature [38], [39] and used 
to classify these imagined motor parameters. The core of SVM 
is to construct the optimal hyper plane so that the classification 
error of the unknown sample is minimized. 

To change the nonlinear inseparable problem into the linear 
separable problem, the appropriate kernel function was chosen 
for the classification hyper plane to perform the nonlinear 
transform. The radial basis kernel function was chosen as the 
kernel function of SVM. 

The SVM function internally determines the 
hyperparameter for regularization. The fitcecoc function was 
used to train a multiclass error-correcting output codes 
model composed of binary SVM learners. The crossval 
function was used to cross-validate SVM classifiers. To 
determine the complexity hyperparameter for regularization, 
4-folds cross-validation was used to train the SVM. In our 
experiment, each subject performed 6 types of motor imagery 
tasks, each of which had 30 trials, for a total of 180 trials. The 
180 trials were randomly divided into 4 subsets, each of which 
had the same number of samples. The samples from 3 randomly 
selected subsets were used for training, while samples from the 
remaining subset were used for testing [40]. Therefore, 
although we conducted a limited number of trials, the randomly 
selected subset samples can be used repeatedly to train and 
validate the SVM model. Furthermore, this determines its 
parameters C and σ through cross-validation. The mean value 
of the 4 classification results by cross-validation were used as 
an estimate of classification accuracy. 

III. RESULTS 

A.  Imagined hand clenching force modulating NIRS and EEG 

Fig. 4(a) shows the time evolution curve of the averaged 
HbO and Hb concentrations related to 20/50/80% MVGF 
imagined tasks at NIRS channel 21 corresponding to the left 
motor cortex for representative subject S1 (Although there 
were variations among the 6 subjects, their results showed 
similar trends.). Fig. 4(a) shows HbO related to 50% and 20% 
MVGF imagined tasks, indicating a trend toward positive 
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change in the interval (-2, 0) s of preparation for the imagined 
force of hand clenching task, except for HbO leveling out for 
80% MVGF imagination; HbO related to the 3 tasks showed a 
trend toward negative values with a negative peak in the 
interval (0, 10) s of execution for the imagined force of hand 
clenching task and then became positive. After the negative 
peak, HbO related to 80/50/20% MVGF imagined tasks 
showed a trend toward positive changes. It had a positive peak 
approximately 6–8 s after the imagined force of hand clenching 
tasks ended at t = 10 s. In addition, the variation trend in Hb was 
approximately opposite that of HbO. 

Fig. 4(b) shows the time evolution curve of the averaged 
EEG related to the 3 imagined force of hand clenching tasks at 
channel C3 for representative subject S1. Table I shows the 
variation trend of the potentials related to the 3 conditions in the 
typical intervals. The variation trends of potentials related to 
the 3 conditions in different intervals were not identical. 

The readiness potentials (RP), which slowly increased 
toward negative potentials at least 500 ms before movement 
onset, may represent the planning of a given movement. The 
motor potentials (MP), which approached negative potentials 
with steep slope about 150 ms prior to movement onset, may be 
related to the execution of a given movement. The 
movement-monitoring potentials (MMP), which varied from 
negative potentials to positive potentials after movement onset, 
may be associated with the precision of a given movement [41]. 
The “(-2000, -1196) NC” denotes that the potentials adopted 
negative deflection in the -2000 to -1196 ms interval; the “(-70, 
596) PC” denotes that the potentials adopted positive deflection 
in the 70 to 596 ms interval. 

 
(a)  

 
(b) 

 Fig. 4. Three imagined force of hand clenching parameters (20%/50%/80% 
MVGF) modulated NIRS and EEG. (a) HbO/Hb at NIRS channel 21. (b) 
EEG/MRCP at channel C3. The onset of the imagined force of hand clenching 
tasks was set as t= 0 ms. 

B. Imagined hand clenching speed modulating NIRS and EEG 

Fig. 5(a) demonstrates the time evolution curve of the averaged 
HbO and Hb concentrations related to 0.5 Hz/1 Hz/2 Hz 
imagined speed of hand clenching tasks at NIRS channel 21 for 
representative subject S1. Fig. 5(a) shows HbO related to 1 Hz 
and 2 Hz imagined speed tasks displaying a trend toward  

TABLE I The intervals (ms) and variation trends of readiness potentials 
(RP), motor potentials (MP), and movement-monitoring potentials (MMP) 
related to 3 imagined force of hand clenching tasks at channel C3 for 
representative subject S1. Negative change (NC); Positive change (PC). 

 
  20% MVGF 50% MVGF 80% MVGF 

RP 
(-2000, -1196)  

NC 
(-1557, -1175) 

NC 
(-1584, -650) 

NC 

MP 
(-880, -70) 

NC 
(-364, -44) 

NC 
(-212, 16) 

NC 

MMP 
(-70, 596) 

PC 
(-44, 376) 

PC 
(16, 312) 

PC 

 
negative change in the interval (-2, 0) s of preparation for the 
imagined speed of hand clenching tasks and a negative peak in 

the interval (0, 10) s of execution for the imagined speed of 
hand clenching tasks. After the negative peak, HbO related to 1 
Hz and 2 Hz imagined tasks had a positive change and reached 
a positive peak at approximately 6–8 s after the imagined speed 
of hand clenching tasks ended at t = 10 s. 

Imagined hand clenching at the slow speed of 0.5 Hz seemed 
to be special. The related HbO had a negative peak in the 
interval (-5, 0) s and then began slow positive changes, 
reaching a positive peak about 8 s after imagined movement 
ended at 10 s.  

Fig. 5(b) reveals the time evolution curve of the averaged 
EEG related to the 3 imagined speed of hand clenching tasks at 
channel C3 for representative subject S1. Table II shows the 
variation trend of the potentials related to the 3 conditions in the 
typical intervals. 

 
(a) 

 
(b) 

Fig. 5. Three imagined speed of hand clenching parameters (0.5/1/2 Hz) 
modulated NIRS and EEG. (a) HbO/Hb at NIRS channel 21. (b) EEG/MRCP at 
channel C3. (c) HbO/Hb at NIRS channel 7. (d) EEG/MRCP at channel C4. 
The onset of the imagined speed of hand clenching tasks was set as t = 0 ms. 
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C. Statistical analysis of NIRS and EEG related to imagined 
force and speed of hand clenching 

Below the significance level of 0.05, the value of the statistic 
F is greater than the critical value F0.05 (5, 24) = 2.62, so the 
probability P < 0.05. This indicated that the tested factor of 
imagined hand clenching force and speed had a significant 
impact on NIRS (HbO and HbD) and EEG (IA, IP, and IF). 

 
TABLE II The intervals (ms) and variation trends of readiness potentials 

(RP), motor potentials (MP), and movement-monitoring potentials (MMP) 
related to 3 imagined speed of hand clenching tasks at channel C3 for 
representative subject S1. Negative change (NC); Positive change (PC). 

 
 0.5 Hz 1 Hz 2 Hz 

RP 
(−1556, −796) 

NC 
(−1632, −830) 

NC 
(−1820, −1136) 

NC 

MP 
(−500, −196) 

NC 
(404, 76) 

NC 
(1136, 330) 

NC 

MMP 
(−196, 572) 

PC 
(76, 504) 

PC 
(330, 925) 

PC 

D. Classification for imagined force and speed of hand 
clenching by NIRS, EEG, and NIRS-EEG 

Based on the materials and methods proposed in this paper, 

after investigating imagined force and speed of hand clenching 
modulation of brain activity using NIRS combined with EEG, 
multi-levels of imagined movement parameters (a total of 6 
classes) were classified by the fusion features of NIRS and 
EEG using SVM to explore potential application in the field of 
BCI. 

The identification accuracies for 3 levels of hand clenching 
force and 3 levels of hand clenching speed motor imageries (6 
class-classifications) based on NIRS (HbO-HbD), EEG 
(IA-IP-IF), and NIRS-EEG (HbO-HbD & IA-IP-IF) merged 
features by SVM are shown in Table III and Fig. 6. The average 
classification accuracies across 6 subjects by the HbO-HbD 
feature combination of NIRS, the IA-IP-IF feature combination 
of EEG, and the HbO-HbD & IA-IP-IF of NIRS-EEG feature 
combination were 0.64 ± 0.04, 0.72 ± 0.03, and 0.74 ± 0.02, 
respectively. Compared with accuracies of non-trained, those 
of trained by the HbO-HbD, the IA-IP-IF, and the HbO-HbD & 
IA-IP-IF were 0.69 ± 0.01, 0.74 ± 0.01, and 0.75 ± 0.01, 
respectively. 

 

TABLE III. Identification accuracies for 3 levels of hand clenching force and 3 levels of hand clenching speed motor imageries (6 class-classifications) 
based on NIRS (HbO-HbD), EEG (IA-IP-IF), and NIRS-EEG (HbO-HbD & IA-IP-IF) features by SVM. 

 

Subject S1 S2 S3 S4 S5 S6 Trained Non-trained All 

HbO-HbD 
0.66 ± 

0.05 
0.64 ± 
0.03 

0.60 ± 
0.04 

0.62 ± 
0.03 

0.64 ± 
0.03 

0.68 ± 
0.04 

0.69 ± 
0.01 

0.63 ± 0.02 
0.64 ± 
0.04 

IA-IP-IF 
0.73 ± 
0.04 

0.70 ± 
0.02 

0.71 ± 
0.05 

0.72 ± 
0.03 

0.74 ± 
0.04 

0.72 ± 
0.01 

0.74 ± 
0.01 

0.71 ± 0.01 
0.72 ± 
0.03 

HbO-HbD &IA-IP-IF 0.73 ± 
0.02 

0.71 ± 
0.01 

0.72 ± 
0.02 

0.74 ± 
0.03 

0.78 ± 
0.01 

0.77 ± 
0.02 

0.75 ± 
0.01 

0.73 ± 0.02 
0.74 ± 
0.02 

 

Trained Non-trained All
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Fig. 6. Identification accuracies for 3 levels of hand clenching force and 3 levels of hand clenching speed motor imageries based on NIRS (HbO-HbD), EEG 
(IA-IP-IF), and NIRS-EEG (HbO-HbD & IA-IP-IF) features by SVM. Identification accuracy varied with different groups. 
 

IV. DISCUSSION 
Differing from the previous single measurement method or 

combined method without measuring the same brain position 
[11], this study made full use of the optical probe spacing of 3 
cm and detection region located in the intermediate area 

between the emitter and detector [13]. In addition, the present 
study took into account the effects of EEG electrode diameter 
(1 cm) and NIRS probe diameter (2–3 mm) and placed the EEG 
electrodes in the intermediate area between the NIRS probes 
(Fig. 2) to measure synchronously EEG activity and the 
corresponding NIRS activity. Therefore, EEG electrodes and 
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optical probes can share the same measurement location with 
the proposed method. The single neuroimaging method has 
advantages, but it is difficult to overcome its inherent 
limitations [12]. A neuroimaging method that combines the 2 
acquisition methods was required to acquire simultaneously 
activation related to cognitive activities in the same brain area.  

NIRS has a significant problem that was confirmed by the 
study. There was a long delay (6–10 s) in the hemodynamic 
responses (as shown in Figs. 4 and 5), which lagged behind a 
specific sensation, perception, and cognitive activity [3]. 
Therefore, the method of NIRS combined with EEG must solve 
the problem of long delay in the hemodynamic response. This 
problem may be alleviated by appropriate data fusion methods. 
The information transmission rate of BCI based on NIRS 
combined with EEG may suffer from the poor response time of 
NIRS [11]. However, the classification accuracy for mental 
activities based on NIRS combined with EEG may be improved 
by their complementary information content [11]. NIRS 
indirectly characterizes neural activity by the hemodynamic 
response to brain activity; conversely, EEG directly reflects 
neural activity. However, their mechanisms are different and 
they involve 2 different types of signals. The differences 
between them usually result in different classification results 
for motor imagery. The proposed method of simultaneously 
measuring activity in the same area of the brain using NIRS 
combined with EEG may provide further support for mutual 
complementation of the 2 types of data. 

In addition, as shown in Figs. 4 and 5, compared with EEG, 
the HbO signal is relatively stable, subject to little 
contamination such as eye movement (evoking EOG) and body 
movement (evoking EMG), and has a relatively high signal to 
noise ratio. There are some significant differences in the 
amplitude and peak of HbO related to 3 imagined force and 
speed of hand clenching tasks. However, compared with NIRS 
signals, EEG displays intense oscillations, strong 
non-stationarity, large variability, and predominantly 
spontaneous activity, which may drown the small modal in 
EEG. In addition, EEG has a low signal to noise ratio and is 
susceptible to strong artifact contamination such as EOG, EMG, 
line noise, and micro-movement of cables. Although EEG and 
NIRS have low spatial resolution (1–2 cm) [11], NIRS may 
discriminate activations from different brain areas more 
accurately than EEG. Finally, EEG has good time resolution 
and thus a short delay in response to 3 imagined force and speed 
of hand clenching movements and may, to a certain extent, 
almost characterize in real time the latency of the positive and 
negative peaks related to 3 imagined force and speed of hand 
clenching (as shown in Tables I and II). 

Fig. 4(a) shows that imagined hand clenching force 
modulated NIRS signals. HbO concentrations in response to 
different imagined force of hand clenching tasks had different 
negative peaks, positive peaks, and latencies. In the interval (0, 
10) of 3 imagined hand clenching force tasks, HbO displayed a 
negative change and had a negative peak at the left motor cortex 
(NIRS channel 21). The order for the negative peak (NP) 
magnitude from high to low was NP20, NP50, and NP80, and the 
order for the negative peak latency (NPL) from long to short 
was NPL80, NPL50, and NPL20. After the negative peak, HbO 
responses to 3 imagined hand clenching force tasks trended to 
positive changes and a positive peak about 6–8 s after motor 

imagery ended (t = 10 s). The order for the positive peak (PP) 
magnitude from high to low was PP50, PP20, and PP80; the order 
for the positive peak latency (PPL) from long to short was 
PPL80, PPL50, and PPL20. EEG at C3 did bring a corresponding 
change in HbO at NIRS channel 21 (EEG at C3 did not 
correspond to HbO at NIRS channel 21). This may be because 
there are 2 types of signal. EEG can directly reflect electrical 
activity of neurons in the brain, while NIRS may indirectly 
reflect brain activity by detecting variation in HbO/HbR 
concentration based on the neurovascular coupling hypothesis. 
Therefore, they are not directly comparable, but their 
information content can be complementary. In the interval 
(-2000, 1000) ms, EEG related to 3 imagined hand clenching 
forces may reflect neural processing of movement readiness, 
execution, and monitoring, which occurred in different 
intervals. This may embody the advantage of EEG time 
resolution, but EEG spontaneously oscillated and suffered from 
contamination. Three imagined hand clenching force tasks 
modulating brain signals in the right motor cortex (NIRS 
channel 7 and EEG electrode C4) were similar to Fig. 4 (a) and 
(b). 

Fig 5(a) shows that imagined speed of hand clenching 
modulated NIRS signals. HbO concentrations in response to 
different imagined speed of hand clenching tasks had different 
negative peaks, positive peaks, and latencies. In the interval (0, 
10) of imagined speed of hand clenching tasks, HbO related to 
imagined hand clenching at 1 Hz and 2 Hz exhibited a negative 
change and a negative peak in the left motor cortex (NIRS 
channel 21). The order for the negative peak (NP) magnitude 
from high to low was NP2Hz and NP1Hz; the order for the 
negative peak latency (NPL) from long to short was NPL1Hz and 
NPL2Hz. After the negative peak, HbO in response to imagined 
speed of hand clenching tasks trended to positive changes and 
had a positive peak about 6–8 s after motor imagery ended (t = 
10 s). The order for the positive peak (PP) magnitude from high 
to low was PP1Hz and PP2Hz, while the order for the positive 
peak latency (PPL) from long to short was PPL1Hz, and PPL2Hz. 
Three imagined speed of hand clenching tasks modulating 
brain signals in the right motor cortex (NIRS channel 7 and 
EEG electrode C4) were similar to Fig. 5(a) and (b). HbO 
related to imagined hand clenching at 0.5 Hz mainly displayed 
a rising trend towards the positive, a typical HbO behavior, for 
which there is no appropriate interpretation at this time. 
Normally, the typical behavior of variation in hemoglobin 
concentration was such that HbO increased while HbR 
decreased in an approximate mirror fashion during brain 
activation [11]. In addition, the increase in HbO related to brain 
activation lagged behind brain activation with a long time delay 
of about 6–10 s. The results of this study showed a distinct 
pattern of hemoglobin response in which HbO initially 
exhibited a decline and then a rise during imagined force and 
speed of hand clenching tasks (as shown in Figs. 4 and 5). The 
initial decline in HbO concentration may be due to oxygen 
consumption by neuronal activation, but consumption of 
oxygen causes an increase in blood supply, which in turn leads 
to a rise in HbO concentration. These phenomena may be 
caused by the effect of blood over-perfusion. HbO had a 
positive peak at about 6–8 s after imagined force and speed of 
hand clenching movement ended, which is consistent with 
results based on fNIRS and fMRI [11]. The lagging positive 
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changes in HbO also reflect mental activities for imagined force 
and speed of hand clenching movement or imagined hand 
clenching force and speed modulating HbO. In addition, in 
contrast to HbO, HbR showed a slow rising trend and a decline 
during imagined force and speed of hand clenching movement. 

The analysis showed that the activity pattern over all of the 
subjects in these channels had certain variability because of 
differences between the subjects. Although channels 7 and 21 
and C3 and C4 were not the only active channels for NIRS and 
EEG, their representations of motor areas were mainly 
analyzed in the current study and as few channels as possible 
were considered for decoding imagined hand clenching force 
and speed. 

For identification of right hand clenching force and speed 
parameters imagery, Table III shows that the IA-IP-IF 
combination feature outperformed the HbO-HbD combination 
feature by 8% for the average of all subjects. This may indicate 
that EEG, which directly reflects electrical activity of neurons, 
differs from NIRS, which detects a metabolic signal that 
indirectly reflects neuronal activity. The 2 techniques have 
different information content. Table III also shows that the 
HbO-HbD & IA-IP-IF combination feature outperformed the 
HbO-HbD and the IA-IP-IF combination feature by 10% and 
2% for the average of all subjects, respectively. This result may 
also indicate that EEG is complementary to NIRS and that 
combining the 2 methods can improve classification accuracy. 

Additionally, Table III shows that the classification 
accuracies of the 6 subjects were not the same. The main reason 
for this is in the differences of each subject’s mental activity for 
imagined hand clenching at a specific speed or force. This 
resulted in EEG and NIRS differences, which yielded 
differences in classification features and results. Table III also 
shows that the classification accuracies of trained subjects were 
better than those of subjects without training (2 to 6% 
improvement). Furthermore, using a combination of NIRS and 
EEG improved classification accuracy compared to using the 
single mode NIRS or EEG (1 to 10% improvement). 

Moreover, as shown in Table III, classification accuracy of 
the trained group outperformed that of the non-trained one by 
2–6%. This may demonstrate that training subjects increases 
separation of features, and good training is expected to further 
improve classification accuracy.  

In short, the NIRS-EEG fusion feature (HbO-HbD & 
IA-IP-IF) improves accuracy of decoding imagined movement 
parameters, and it is expected to provide more instructions for 
BCIs to naturally control devices such as manipulators. 
However, further improvement in classification accuracy of 
imagined movement parameters is required. The measures to be 
taken are: (1) improving the NIRS-EEG signal to noise ratio by 
designing an adaptive preprocessing algorithm, and 2) online 
training of subjects and producing a significant difference 
between NIRS-EEG features evoked by motor parameters 
imagery. 

Compared with studies of combined NIRS-EEG decoding of 
motor imagery or movement directions [10], [29-31], the 
present study attempted to identify imagined force and speed 
(such as imagined hand clenching force and speed) by 
simultaneously collecting NIRS and EEG data from the same 
motor area. The averaged and maximum accuracy for decoding 
imagined hand clenching force and speed (6 classes) using the 

fusion features of HbO-HbD & IA-IP-IF were 0.74 ± 0.02 and 
0.78 ± 0.01, respectively. It is expected that this study may 
improve classification accuracy of imagined grip strength and 
speed and provide increased control commands of force and 
speed for brain-controlled robots.  

Although the fusion of multi-mode signals may outperform 
sole NIRS or sole EEG, the fusion method choice is important 
for improving the hybrid BCI based on NIRS-EEG. It is 
noteworthy that several recent methods tackle multivariate 
signal analysis on other levels instead of a feature fusion level 
[42]-[45]. In our future work, these new methods will be 
applied to merge NIRS and EEG signals to increase the 
accuracy of the hybrid BCI.  

In addition to the above discussion, many channels are 
related to motor imagery tasks, and the combination of 
multi-channels information may increase classification 
accuracy [46]. However, the use of fewer-channels analysis is 
out of consideration for future studies due to the portability and 
comfort issues accompanying the hybrid NIRS-EEG BCI 
helmet. Although this method attempts to achieve the hybrid 
NIRS-EEG BCI with few NIRS probes and EEG electrodes, 
subjects would feel uncomfortable wearing the multi-channel 
hybrid NIRS-EEG BCI helmet, and would feel pain after 
wearing it for an extended time. This discomfort and pain is due 
to spring pressure applied to NIRS probes on the scalp. 

In addition to the above problems, other questions to be 
discussed, which are how to control motor imagery 
experiments and how to determine whether subjects performed 
the required imagery task according to instructions, have 
remained a bottleneck in BCI based on motor imagery research. 
These questions are also the key to BCI research and its 
practical application. Furthermore, this involves how to 
quantitatively measure the effect or result of motor imagery 
mental activity. A common problem faced by all experiments 
of BCI based on motor imagery (including simple motor 
imagery involving the right and left hands) is the controllability, 
observability, and stability or reliability of the motor imagery 
BCI experiment. Motor imagery is an endogenous, active (or 
subjective) mental activity performed by subjects without overt 
actual movement. Therefore, the experimenter cannot 
determine whether the subjects imagined the movement or how 
well they performed a specific imagination. Neurofeedback 
presented to the subjects is the result of BCI algorithms, and 
thus the decoding methods may present inaccurate results. 
Furthermore, for the development of BCI systems based on 
motor imagery, BCI illiteracy is of great challenge. Therefore, 
the methods or systems of highly efficient training subjects or 
users is a key technology for this kind of BCI system. Thus, the 
design of the experimental paradigm should be improved in our 
future work.  

In detail, due to differences in imagination ability, motor 
imagery between different subjects shows considerable 
difference. Even if subjects performed the same imagery task, 
the resulting NIRS and EEG signals were different. Therefore, 
the feasibility of the superposition of trials was considered, and 
the analysis and interpretation of results required caution. 
Additionally, there was also a difference in the execution of the 
same cued motor imagery mental task at different times by a 
specific subject. To this end, the BCI illiteracy related to motor 
imagery is a great challenge [47]-[50]. This may require 
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customizing a specific BCI system for the specific subject and 
providing specific training. Finally, the PC, NC, and other 
components in Table II show a representative subject (S1). 
Although, there are variations in the timeline for different 
subjects, they demonstrate some similar trends in signal 
changes.  

In the current study, only 6 subjects participated in the 
experiment. After positioning EEG electrodes and NIRS probes, 
it took longer to reduce EEG electrode impedance and adjust 
the intensity of the emission and detection NIRS probes 
compared with a single mode acquisition method, which may 
have affected a subject’s state. Therefore, further exploration 
with a larger group of subjects is necessary to increase 
confidence in the findings. The present results were analyzed 
offline, and further research will use online analysis. 

V. CONCLUSION 
 
A method for simultaneously measuring activation in the 

same brain area using NIRS combined with EEG during 
specific cognitive activities was presented and proven feasible 
and effective. The acquisition method takes advantage of the 
HbO signal, which is relatively stable with little movement 
interference, a relatively high signal to noise ratio, and 
relatively accurate spatial positioning, as well as EEG’s timely 
response to mental activities. It may provide a means for 
integrating NIRS and EEG information content. 

The experimental study showed that imagined hand 
clenching force and speed modulated NIRS signals using the 
proposed acquisition method. There were different negative 
peaks, positive peaks, and latencies of HbO concentrations in 
response to different imagined force and speed of hand 
clenching movement tasks. In the interval (0, 10) s for 
executing imagined force and speed of hand clenching 
movement tasks, HbO initially exhibited a negative deflection 
and a negative peak followed by a positive deflection and a 
positive peak at about 6–8 s when motor imagery ended at t = 
10 s. EEG related to different imagined force and speed of hand 
clenching in the interval (-2, 1) s may reflect brain neural 
processing of readiness, execution, and monitoring of a given 
hand clenching movement imagination. Although these 
modalities seemed to have no influence on each other, NIRS 
combined with EEG measuring the same brain area may yield 
useful information on electrical activity as well as local 
hemodynamics.  

NIRS and EEG reflect activity of neurons from different 
perspectives. Comparison of classification results between 
combined features may indicate that NIRS and EEG 
complement each other, and NIRS-EEG can improve 
classification accuracy of multi-levels of imagined movement 
parameters. Furthermore, the results show that improvement of 
classification accuracy of imagined movement parameters 
depends on the effective training of subjects. 

Our future studies include: 1) Integrating and miniaturizing 
the acquisition method of NIRS combined with EEG to achieve 
a portable NIRS-EEG acquisition system, 2) Developing an 
online BCI system based on NIRS-EEG induced by motor 
parameters imagery and improving performance of the system 
by training subjects using neural feedback. 
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